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The free energy for superconducting electrons in the Bardeen–Cooper–Schrieffer (BCS)
framework is first generalized to apply to superfluid anyons. By appropriate minimization
of this free energy, the gap equation for superfluid anyons is then derived. As an application,
the energy gap �ð0Þ, in reduced energy units kBTc, with Tc the transition temperature,
is obtained as a function of the anyon statistics parameter.
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1. Introduction

After the seminal works of Sutherland [1–5], Wilczek [6], and Haldane [7] (see also
[8–10]), the concept of ‘anyons’, or particles obeying ‘fractional statistics’, has received
considerable attention in recent years. In particular, the thermodynamics of ideal anyon
gases has been extensively studied [11–16]. Although such theoretical studies have been
performed with general reference to systems with arbitrary dimensionality, fractional
statistics has found application especially in quasi-two-dimensional (quasi-2D) systems,
such as the vortices of a strongly interacting 2D gas (2DEG) in a strong magnetic field,
characterized by a fractional quantum Hall effect (FQHE) [17]. In this context, an early
application was made by Lea et al. [18,19] to discuss the de Haas–van Alphen
oscillatory orbital magnetism of a 2DEG. More recently, it has been proposed
how anyon quasiparticles associated with FQHE could be possibly detected experimen-
tally [20,21]. Moreover, Laughlin [22] has argued that the elementary excitations of
Anderson’s resonating valence bond model [23] might obey fractional statistics, thus
supporting the idea of anyon superconductivity.
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Here, we assume indeed that quasiparticles with a gapped energy spectrum obey frac-
tional statistics, and derive a BCS-like equation for the superconducting gap. A central
quantity in such an equation is a generalized pair susceptibility, which explicitly
depends on the statistical parameter �, ranging between �¼ 1 and �¼ 0, corresponding
to the Fermi–Dirac (FD) and Bose–Einstein (BE) limits, respectively. Our study might
be of interest for quasi-2D materials, of which MgB2 is among the most
important examples with a superconducting critical temperature Tc ’ 39K [24].
We mention also the further diboride NbB2 [25] which, however, has a much lower
Tc (Tc ¼ 0:62K [26]).

2. Gap equation for anyon superfluids

We start by considering a system of gapped quasiparticles obeying fractional statistics,
with principal branch of their energy spectrum given by

Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k þ j�kj

2
q

: ð1Þ

Here, �k ¼ �k � � is the free quasiparticle dispersion relation, measured with respect to
the chemical potential �, �k is the energy gap associated to pair formation, and k is the
quasiparticle wave-vector. A microscopic derivation of equation (1) is beyond the scope
of the present study. However, having in mind the diagonalization of the BCS effective
Hamiltonian, such a procedure requires a suitable generalization of the Bogoliubov-
Valiatin transformations for quasifermion assemblies, which in general do not obey
time-reversal invariance (see [27] for a discussion). Here, we simply assume that such
gapped quasiparticles obey anyon statistics.

Specifically, we assume that the distribution function for such superfluid anyons
at inverse temperature � ¼ ðkBTÞ

�1 is given by Wu’s function [9]

f�ð�EkÞ ¼
1

wðe�EkÞ þ �
, ð2Þ

(see also [28–30]) where � denotes the statistical parameter, ranging from �¼ 0 in the
Bose–Einstein (BE) limit, to �¼ 1 in the Fermi–Dirac (FD) limit, and w(�) obeys
Wu’s functional equation [9]

w�ð�Þ½1þ wð�Þ�1��
¼ �: ð3Þ

A sketch of Wu’s distribution function, equation (2), for 0 < � � 1 is given in figure 1.
Some properties of Wu’s distribution function will be summarized in Appendix A.

The free energy for superconducting electrons (subscript �¼ 1 for FD) [32]

F�¼1 ¼ H0 �
1

�

X
k

log 1þ e��Ek
� �

þ log 1þ e�Ek
� �� �

, ð4Þ

H0 ¼
X
k

�k þ�kb
�
k

� �
, ð5Þ
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where bk ¼ hc�k#ck"i is the appropriate order parameter for the formation of singlet
pairs of electrons, can be generalized straightforwardly to describe superfluid anyons as

F� ¼ H0 �
1

�

X
k

log
1þ wðe��EkÞ

wðe��EkÞ

� �
þ log

1þ wðe�EkÞ

wðe�EkÞ

� �� 	
: ð6Þ

It may be checked, by direct inspection, that equation (6) reduces to equation (4) in the
limit � ! 1 (FD).

Then, minimization of the free energy, equation (6), with respect to the gap amplitude
�k (i.e., @F�=@�k ¼ 0) yields the relation between the gap amplitude and the pairing
order parameter:

b�k ¼ �k�
ð�Þ
k , ð7Þ

where �ð�Þ
k is the generalization of the pair susceptibility to embrace arbitrary anyon

statistics:

�ð�Þ
k ¼

1

2Ek

f�ð��EkÞ � f�ð�EkÞ½ � �
1

2Ek

tanh�
1

2
�Ek

� �
: ð8Þ

Again, it may be checked by direct inspection that the generalized pair
susceptibility �ð�Þ

k , equation (8) above, correctly reduces to the familiar expression for
Fermion pairs �ð�¼1Þ

k � �k ¼ ð2EkÞ
�1 tanh ð1=2Þ�Ekð Þ in the limit � ! 1 (FD).

Assuming a standard relation between the pairing order parameter and the gap
energy, as in BCS theory [32], one eventually derives the gap equation for superfluid
anyons as

�k ¼
X
k0

Vkk0
�k0

2Ek0
tanh�

1

2
�Ek0

� �
, ð9Þ

0
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 )

Figure 1. Distribution function for anyon statistics f�ð��Þ, equation (2), times statistical parameter �, for
0 < � � 1, as a function of ��. Different curves refer to equally spaced values of � ranging between �¼ 0 (BE)
and �¼ 1 (FD). Open circles mark the location of the inflection points, dubbed ‘quasi-Fermi level’ in [31].
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where Vkk0 is the pairing potential. In the case of lattice models (see, e.g., [33–35]), such
a potential is invariant with respect to the crystal point group, and may therefore
enforce non-s-wave symmetries.

Summarizing, within this simple approach, the only effect of anyon statistics
is encoded in the generalized pair susceptibility �ð�Þ

k , equation (8), through the ‘modi-
fied’ hyperbolic tangent

tanh� z � f�ð�2zÞ � f�ð2zÞ

¼
1

wðe�2zÞ þ �
�

1

wðe2zÞ þ �
, ð10Þ

implicitly defined in the same equation (8). Plots of the generalized pair susceptibility
�ð�Þ
k are therefore given in figure 2 as a function of �Ek and for several values of the

statistics parameter �. In particular, one recovers the following limiting values

�ð�Þ
k !

1

2�Ek

, as T ! 0, ð11aÞ

! �
w1ð1þ w1Þ

ðw1 þ �Þ3
, as Ek ! 0, ð11bÞ

where w1 ¼ wð1Þ. From the above relations and from figure 2, one finds that �ð�Þ
k is

enhanced by a quasi-fermion value of the statistics parameter (0 < � < 1), with respect
to its behaviour in the FD limit (�¼ 1).

3. Critical temperature and zero temperature gap

We now turn to the solution of the gap equation, equation (9), in the two limiting cases
T ! 0 and T ! Tc, where the critical temperature Tc is defined by the condition
�k ! 0. We shall limit ourselves to the case

Vkk0 ¼ ��	ð�� j�kjÞ	ð�� j�k0 jÞ, ð12Þ

0
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0.5
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−10 −5 0 5 10
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χ k(a

) /b

b
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Figure 2. Generalized pair susceptibility ��ð�Þ
k =�, equation (8), as a function of �Ek, for different values of

the statistics parameter 0 < � � 1, decreasing from �¼ 1 (FD, bottom) to �¼ 0 (BE, towards the top).
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corresponding to s-wave symmetry, where �40 is an energy cutoff, �40 the
interaction strength, and 	(x) is Heaviside’s step function. Higher-order symmetries
can be treated with essentially the same procedure.

In the s-wave case, �k � �	ð�� j�kjÞ, where � ¼ �ðTÞ is implicitly determined from
the solution of

1 ¼ ��
X
k

0 1

2Ek

tanh�
1

2
�Ek

� �
, ð13Þ

where the prime restricts the summation to states within the energy cutoff, j�kj < �.
Making use of equation (11a), in the limit T ! 0 one obtains

�ð0Þ ’ 2� exp �
�

j�jNð0Þ

� �
, ð14Þ

where N(0) is the density of states at the energy corresponding to the inflection point
in figure 1 (at a given �), and j�jNð0Þ � 1.

On the other hand, at T¼Tc, making use of the approximation

tanh� z �
b�z, for jzj � ð�b�Þ

�1,
��1, for jzj > ð�b�Þ

�1,



ð15Þ

where b� ¼ 4w1ð1þ w1Þ=ðw1 þ �Þ3 [cf equation (11b)], and of standard BCS
procedures [32], one obtains

kBTc ’
e

2
�b�� exp �

�

j�jNð0Þ

� �
: ð16Þ

From equations (14) and (16) it follows that

�0

kBTc
’

1

e

ðw1 þ �Þ3

�w1ð1þ w1Þ
: ð17Þ

Figure 3 shows the dependence of this ratio on the statistical parameter �.
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Figure 3. Ratio of energy gap�ð0Þ at T¼ 0 and kBTc, equation (17), as a function of statistical parameter �.
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4. Conclusions

By generalization of the free energy for superconducting electrons, where Cooper
pairs are bound as a result of electron–phonon interaction, we are able, by appropriate
minimization, to obtain a gap equation for superfluid anyons. The potential application
is to quasi-2D diborides and, in particular, MgB2 and NbB2. As an application of the
use of the gap equation derived here, the ratio �ð0Þ=kBTc, with �ð0Þ the energy gap
at zero temperature, is calculated as a function of the statistical parameter �.
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Appendix A: Some analytical properties of Wu’s distribution function for anyons

Wu’s functional equation [9], equation (3), has been extensively studied in both the
mathematical and the physical literature [10,11,15,16]. Explicit expressions for Wu’s
function w(�) are known for several integer and rational values of the statistical
parameter �, even outside its physical bounds 0 � � � 1. In general, Wu’s function
can be related to hypergeometric functions, and some useful series expansions and
integral representations are known in several limits [11,16].

Here, we briefly comment on some analytical properties of Wu’s distribution func-
tion f�ðzÞ, equation (2), as a function of complex energy z. We start by reminding the
well-known expressions of its FD (�¼ 1) and BE (�¼ 0) limits, which are given by

f1ðzÞ ¼
1

ez þ 1
ðFDÞ, ð18aÞ

f0ðzÞ ¼
1

ez � 1
ðBEÞ: ð18bÞ

Both f1ðzÞ and f0ðzÞ are meromorphic functions, with simple poles located along the
imaginary axis at z ¼ ð2kþ 1Þi
 and z ¼ 2ki
 (k 2 Z), i.e., at odd and even multiples
of i
, respectively. These facts have direct consequences in the Mittag–Leffler expan-
sion of the key quantity entering the definition, equation (8), of the pairing susceptibil-
ity, namely the modified hyperbolic tangent tanh� z, equation (10). Such expansions for
the two limiting cases of Fermions and Bosons read [36], respectively,

tanh1 z ¼ tanh z ¼ 2z
X1
k¼0

1

z2 þ kþ ð1=2Þð Þ
2
2

, ð19aÞ

� tanh0 z ¼ coth z ¼
1

z
þ 2z

X1
k¼1

1

z2 þ k2
2
: ð19bÞ
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It should be noted that, while equation (19a) is used within BCS theory to compute

a more accurate approximation [37] of the superconducting critical temperature, than

that given in equation (16). The origin of BE condensation for assemblies with �¼ 0

(Bosons) can be traced ultimately back to the presence of a single real pole (z¼ 0)

in the expansion equation (19b) [37].
In the more general case of intermediate statistics (0 < � < 1), neither expansion

holds any more. By direct inspection of equation (2), one finds that Wu’s distribution

function f�ðzÞ is characterized by infinitely many branching points of polar type, located

in the complex plane at

z�k ¼ � log �þ ð1� �Þ logð1� �Þ þ ð2k� �Þi
, ð20Þ

where k 2 Z. Around each singularity, Wu’s distribution function behaves as (cf [11])

f�ðzÞ 	 

iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�ð1� �Þ
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

z� z�k

q , z 	 z�k : ð21Þ

The situation is depicted in figure 4. Moving away from the FD limit (�¼ 1), each

simple pole for f1ðzÞ located along the imaginary axis at odd multiples of i

[ð2kþ 1Þi
, say; filled circles in figure 4] evolve into two square-root-like branching

points of polar type for f�ðzÞ at zþk and z�kþ1, respectively. The same happens to

f�ð�zÞ, but now with singularity pairs located in the Re z > 0 half plane (not shown

in figure 4).

−1

−0.5

0

 0.5

1

−1 −0.5 0 0.5 1

Im
 z

Re z

FD BE

−10

−5

0

5

10

−1 −0.5 0  0.5 1

Im
 z

Re z

FD

BE

Figure 4. Left panel shows the locus of the singularities of f�ðzÞ in the complex plane � ¼ ez. The solid and
dashed lines refer to the plus and minus signs, respectively, in equation (20). For each value of the statistical
parameter 0 < � < 1, these singularities consist of two branching points of polar type, while for �¼ 0
(BE, open circle) and �¼ 1 (FD, filled circle) these merge into a single pole. Right panel shows the same
singularities, but now in the complex plane z. Because of the (purely imaginary) periodicity of the exponential
function, the two singularities in the � variable give rise to infinitely many such singularities as a function of z.
One recognizes the familiar poles of f0ðzÞ (BE, open circles) and f1ðzÞ (FD, filled circles) along the imaginary
axis in the two limiting cases �¼ 0 and �¼ 1, respectively.
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Making use of the above discussion, and of the definition equation (10), by analogy
with equation (19a), we arrive at the following conjecture for a Mittag–Leffler-like
expansion of our ‘modified’ hyperbolic tangent:

tanh� z ¼
1

�

X1
k¼0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zþ ð1=2Þzþk
� �

zþ ð1=2Þz�kþ1

� �q �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z� ð1=2Þzþk
� �

z� ð1=2Þz�kþ1

� �q
0
B@

1
CA,

ð22Þ

where
ffiffiffi
z

p
denotes the principal branch of the square root function in the complex

domain. Equation (22) correctly reduces to equation (19a) in the limit � ! 1, and
has been verified within numerical accuracy for 0 < � � 1 against equation (10) over
the real axis. In addition, it fulfills the limiting behaviour equation (11a).

Moreover, by using the results of [11] and equation (10) of this article, we can express
the generalized pairing susceptibility in the form of the following series:

1

2z
tanh�

z

2
¼

X1
m¼0

ð�1Þm
ðm�þ ��mÞm

m!

sinh½ðmþ 1Þz�

z
, ð23Þ

which is convergent for 0 � � � 1 and �c < jezj < ��1
c , with �c ¼ ��ð1� �Þ1��

[implying jRe zj < �� log �� ð1� �Þ logð1� �Þ along the real axis], and where
ðnÞm ¼ �ðmþ nÞ=�ðnÞ denotes the Pochhammer symbol.
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